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Tsunamis may be generated by 
subduction zone earthquakes in 
four ways, as summarized in Fig. 
1.1.

Cascadia megathrust rupture 
models previously developed for 
tsunami hazard assessment 
include scenarios (a) and (b). The 
2011 Mw 9.0 Tohoku-oki 
earthquake raised a new question. 
Can the shallowest portion of the 
Cascadia megathrust also slip to 
trench in great earthquakes as in 
the Tohoku-oki earthquake (c) or 
would it normally resist coseimic 
rupture but creep aseismically 
afterwards as in the 2005 Mw 8.7 
Nias earthquake (a)? To answer 
this question, we reanalyzed 
seismic images from marine 
multichannel seismic surveys 
conducted in 1985 and 1989 with a 
new focus on the accretionary 
wedge deformation front.

2.1 Comparison with Japan

(Kodaira et al., 2012)

Japan

2.2 Deformation Styles along Northernmost Cascadia 

             2.3 
back-thrusts contribute to tsunami generation?

How do frontal thrusts and 

Slip-to-trech rupture: 
not very likely at Cascadia

Hypothetical frontal thrust and back-thrust models

Tsunami sources are 
simulated with a 3-D numerical 
dislocation model in a uniform 
elastic half-space. The code 
numerically integrates the 
point-source dislocation 
solution of Okada [1985] over 
a three-dimensionally curved 
megathrust and yields 
displacement at surface 
observation points. Details of 
the modelling method are 
given by Wang et al. [2003].

1. Given the complex structure at Cascadia’s deformation front, 
slip-to-trench rupture is not a very likely scenario. Buried rupture 
and activation of multiple thrusts may be more likely scenarios.

2. Back-thrust rupture near deformation front is unimportant for 
tsunami generation. 

3. For tsunami hazard assessment, we should consider all the 
rupture scenarios, including the low probability slip-to-trench 
rupture involving frontal thrusts.   
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Fig. 1.1. Four rupture scenarios of 
subduction zone earthquakes in generating 
tsunamis [Wang and Trehu, 2015]. Red 
arrows represent coseismic slip.   

Fig. 2.4. Deformation styles. Black and green arrows denote the dominant 
frontal thrust and/or back-thrust, respectively, in each profile.

Fig. 2.5. (a) Frontal thrust 
example. Blue arrows: 
assumed coseismic slip in 
megathrust earthquakes. 
We assume that the 
dominant thrust F2a 
connects to the 
decollement. (b) Back-
thrust example. 
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Fig. 2.1. The 1985 (black lines) [Yorath et al., 1987; Clowes et al., 1987; Davis 
and Hyndman, 1989] and 1989 (red lines) [Spence et al., 1991a, 1991b; 
Hyndman et al., 1994; Yuan et al., 1994] marine multichannel reflection profiles. 

Fig. 2.2. Seismic image crossing the Japan trench. See the sketch in Fig 1.1c.

Fig. 2.6. Hypothetical frontal 
thrust (yellow line) and back-
thrust (black line), obtained 
using the dominant thrust/back-
thrust from each seismic profile 
shown in Fig. 2.4. Orange line: 
splay fault.
 
Red triangles: dominant thrust
Red dots: dominant back-thrust

Frontal thrust

Back-thrust
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Fig. 3.1. Dislocation model. The triangles 
actually used for numerical integration are 
too small to be shown here.

(b) Trench-breaching rupture scenario 2 

(c) Trench-breaching rupture scenario 3 f

(a) Trench-breaching rupture scenario 1 
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Fig. 5.2. Tests showing the unimportance of back-thrust rupture component.
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Fig. 6.1. Maximum wave height during the first 6 hours based on different rupture 
scenarios. Reference: mean sea level (MSL). 

[Kodaira et al., 2012]

Fig. 2.3. Two examples of seismic profiles at Cascadia.
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     4. Buried and Splay Faulting Rupture 
Scenarios for Tsunami Hazard Assessment 

 (b) Splay faulting rupture scenario

  (a) Buried rupture scenario

 (c) Values along the profile  f
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Fig. 4.1.  Two rupture scenarios for tsunami hazard assessment.
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Fig. 5.1.  Three trench-breaching rupture scenarios for tsunami hazard assessment.
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  (b) Application 2:
   Maximum wave   
    height over 6h  
  simulation due to 
  trench-breaching 
  rupture scenario1
        (Fig. 5.1a)
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(a) Application 1:
Maximum wave 
height over 6h 

simulation due to 
buried rupture 

scenario (Fig. 4.1a)
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  (c) Application 3:
   Maximum wave   
    height over 6h  
  simulation due to 
  trench-breaching  
  rupture scenario 2
         (Fig. 5.1b)
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