Physical Oceanography of Submarine Canyons：

 Research at UBCKarina Ramos Musalem and Susan E．Allen

Department of Earth，Ocean and Atmospheric Sciences，UBC

October 5th， 2015

Students and postdocs

Xiaoyang Chen
Carine Vindeirinho
David Gorby
Anthony Hewett
Ramzi Mirshak
Amy Waterhouse
Sergio Jaramillo
Alexander Bowie
Neil Swart
Jessica Spurgin
Kate Le Souef
Jordan Dawe
Tara Howatt
Karina Ramos Musalem
Robert Irwin
Idalia Machuca

Collaborators

Richard Thomson
Barbara Hickey John Klinck
Michael Dinniman
Michael Foreman
Blair Greenan

Research methods

- Physical models
- Numerical models
- Collaboration with observationalists

Submarine canyons

- Regions of enhanced upwelling
- Key for cross-shelf break exchange, including nutrient flux onto the shelf

Image from http://creagrus.home.montereybay.com/MtyBay.html

Shelf-break restriction on flow

Image modified from Allen (2004).

Basic flow circulation in a canyon

Advection driven phase of upwelling in a short canyon.

Image modified from Allen and Hickey (2010).

Circulation around Barkley Canyon

24 sigma-T depth (m)

26 sigma-T depth (m)

Upwelling quantification

Scaling scheme by Allen and Hickey (2010) in terms of stratification N, canyon geometric parameters ($L, W_{\text {sb }}$), incoming flow velocity U, Coriolis parameter f and a canyon Rossby number \mathcal{R}.

Depth of upwelling

$Z(U, N, L, \mathcal{R})$

Upwelling flux

$\Phi\left(U, W_{s b}, L, N, f, \mathcal{R}\right)$

Figure from Allen and Hickey (2010).

Mixing and stirring

- Enhanced mixing due to breaking internal tides and internal waves (Hickey, 1995).
- Observations: Diapycnal diffusivity κ_{D} is very high (about two orders of magnitude) compared to levels outside.
E.g.:

Monterey Canyon	$\kappa_{d} \approx 2.5 \times 10^{-2} m^{2} s^{-1}$	Carter and Gregg (2002)
Ascension Canyon	$\kappa_{d} \approx 3.9 \times 10^{-3} \mathrm{~m}^{2} s-1$	Gregg et al. (2011)
Gaoping Canyon	$\kappa_{d} \approx 10^{-2} \mathrm{~m}^{2} \mathrm{~s}^{-1}$	Lee et al. (2009)

- Patterns of diapycnal diffusivity are highly variable in time and space $=$ geography of mixing.
- Stirring inside the canyon along isopycnal surfaces that tilt considerably during upwelling.

- To go from estimates of water transport to tracer flux onto the shelf consider mixing + stirring of tracers.

Barkley Canyon Nutrient Profiles

Collected during Pathways Cruise 2013 (R/V Falkor)

(umeli.)
linear
exponential logarithmic sqrt+linear
potential

Tracer scaling

Numbers for Barkley canyon suggest that

- Vertical advection and diapycnal diffusivity are both relevant for the distribution of tracers.
- Horizontal advection dominates over isopycnal diffusivity ($P e_{h} \gg 1$).
- Diapycnal diffusion acts faster than isopycnal diffusion.
- Second derivatives may be important, especially for nitrate and oxygen.

Sensitivity studies

Long term goal

Quantify the enhanced flux of tracers (such as nitrate, oxygendeficit, dissolved inorganic carbon) onto the continental shelf due to small topography such as submarine canyons.

Thank you!

*Characteristic values used to estimate non-dimentional numbers

Number	Value	
L	$6.40 \times 10^{3} \mathrm{~m}$	Allen and Hickey (2010)
$W_{s b}$	$1.30 \times 10^{4} \mathrm{~m}$	
D_{h}	138 m	
U^{*}	$6.60 \times 10^{-2} \mathrm{~ms}^{-1}$	
N	$5 \times 10^{-3} \mathrm{~s}^{-1}$	
Ω	$2.23 \times 10^{-4} \mathrm{~ms}^{-1}$	
Z	$2.17 \times 10^{1} \mathrm{~m}$	Calculated from data
κ_{I}	$2 \mathrm{~m}^{2} \mathrm{~s}^{-1}$	Ledwell et al. (1998)
κ_{D}	$3.90 \times 10^{-3} \mathrm{~m}^{2} \mathrm{~s}^{-1}$	Gregg et al. (2011)

According to Buckingham- π theorem:

10 parameters -4 dimensions $=6$ non-dimensional groups

Group	Symbol	Definition	Description
π_{1}	$P e_{h}$	$\frac{L U^{*}}{\kappa_{I}}$	Horizontal Peclet number
π_{2}	$P e_{V}$	$\frac{Z \Omega}{\kappa_{D}}$	Vertical Peclet number
π_{3}	K	$\frac{Z^{2}}{L^{2}} \frac{\kappa_{I}}{\kappa_{D}}$	Diffusivity ratio
π_{4}	Γ	$\frac{Z}{L} \frac{\delta_{\nu} C}{\delta_{h} C}$	Gradient ratio
π_{5}		$-\frac{Z \delta_{v}^{2} C}{\delta_{V} C}$	Vertical curvature to gradient ratio
π_{6}		$\frac{L \delta_{h}^{2} C}{\Gamma \delta_{h} C}$	Horizontal curvature to gradient ratio

Sensitivity studies

