Physical and biological processes over a submarine canyon during an upwelling event

S.E. Allen, C. Vindeirinho, R.E. Thomson, M.G.G. Foreman, and D.L. Mackas

Abstract: Short, shelf-break canyons are shown to have a substantial influence on local water properties and zooplankton distribution. Barkley Canyon (6 km long) off the west coast of Vancouver Island was extensively sampled in July 1997 and found to have water property and current patterns similar to those observed over Astoria Canyon (22 km long) off the coast of Washington State. Results from Barkley Canyon reveal that the canyon influence can occur very close to the surface (at the thermocline depth of 10 m) and that, near the canyon rim, the stretching vorticity generated over the canyon is strong enough to produce a closed cyclonic eddy of sufficient strength to trap deep passively drifting tracers. Most zooplankton species are advected by the currents; those near the ocean surface pass over the canyon, while those at depth are advected toward the coast. Euphausiids (Euphausia pacifica and Thysanoessa spinifera), the strongest swimming zooplankton collected in the 1997 study, were most prevalent in the closed eddy region near the head of the canyon. The observed aggregation of these animals appears to be linked to their ability to remain at specific depths combined with advection by horizontally convergent flows in the eddy.

Résumé : Les courts canyons sur les bordures escarpées du plateau continental peuvent exercer une grande influence sur les propriétés hydrologiques locales et sur la répartition du zooplancton. Une étude détaillée en juillet 1997 du canyon Barkley (6 km de longueur) au large de la côte occidentale de l’île de Vancouver a révélé que les propriétés hydrologiques et les patterns de courants y qui y règnent sont semblables à ceux qui ont été observés au canyon Astoria (22 km de longueur) au large de la côte de l’état du Washington. L’influence du canyon Barkley se manifeste jusque près de la surface (à 10 m, la profondeur de la thermocline); près de la bordure du canyon, l’étrirement du tourbillon généré dans le canyon est suffisamment fort pour produire un tourbillon cyclonique fermé assez puissant pour retenir des traceurs qui dérivent passivement en profondeur. La plupart des espèces du zooplancton sont advectées par les courants; celles qui sont près de la surface de l’océan passent au-dessus du canyon, mais celles qui sont plus en profondeur sont acheminées vers la côte. Les euphausiidés (Euphausia pacifica et Thysanoessa spinifera), les meilleurs nageurs dans le zooplancton récolté en 1977, se retrouvent surtout dans la région du tourbillon fermé près du sommet du canyon. La répartition contagieuse de ces animaux semble s’expliquer par leur capacité à se maintenir à des profondeurs particulières, ainsi que par l’advection par les courants horizontaux convergents dans le tourbillon.

[Traduit par la Rédaction]

Introduction

Shelf-break canyons such as Barkley Canyon, located at 48°25′N 126°00′W off the southwest continental margin of Vancouver Island (Fig. 1), are deep (hundreds of metres) and steep-sided valleys that cut from the continental slope into the continental shelf. During upwelling-favourable conditions on the shelf, enhanced upwelling occurs within these canyons (Freeland and Denman 1982; Hickey et al. 1986; Hickey 1997), producing local vertical displacements of various water property isoclines (e.g., temperature, salinity, density, oxygen, nutrient concentration). Local concentrations of plankton and fish are also often enhanced in and around shelf-break canyons (Pereyra et al. 1969; Macquart-Moulin and Patriti 1996; Mackas et al. 1997). In this paper, we use water property, current meter, and zooplankton measurements from Barkley Canyon to define the flow features associated with a canyon during upwelling and to determine the influence of the flow pattern on zooplankton distributions.

Shelf-break canyons vary greatly in size. Compared with Astoria Canyon, for which detailed cross-canyon hydrographic and current measurements have been made during upwelling events (Hickey 1997), Barkley Canyon is short, has less vertical relief, and is somewhat narrower. Barkley Canyon is 13 km wide and 6 km long whereas Astoria Canyon is 16 km wide and 25 km long. The water inshore from Barkley canyon is approximately 150 m deep and the shelf break upstream and downstream of the canyon is about 200 m deep. The water inshore from Astoria Canyon is 75 m deep and the shelf break upstream and downstream of the canyon is about 150 m deep. A water parcel traveling parallel to the shelf break north of Barkley Canyon would encounter maximum depth changes over the canyon of about 400 m. Astoria Can-
Fig. 1. Geographical area around Barkley Canyon and the locations of the sampling stations. (a) Inset shows the location of the main map relative to Vancouver Island and the Strait of Georgia. The main map shows the location of Barkley Canyon with the locations of the wind buoy, mooring MA1, and hydrographic lines B and C. The bathymetric contours are in metres. The dashed box refers to the area shown in Fig. 1b. (b) Hydrographic stations sampled around Barkley Canyon in July 1997 (circles and triangles), zooplankton tow stations from July 1997 (triangles), and mooring locations occupied during the summer of 1997 (circled dots).
bathymetric contours outline Barkley Canyon and Nitinat Canyon. The shelf break in the vicinity of the canyons occurs at about the 200-m contour. This contour also outlines the rim of the canyons. The region where a canyon opens up onto the continental slope is called the mouth; station C4 marks the centre of the mouth of Barkley Canyon. The region where the canyon merges with continental shelf is called the head; mooring M1 marks the centre of the head of Barkley Canyon. During upwelling-favourable currents, flow is southeastward; upstream is towards the northwest and downstream towards the southeast.

Fig. 2. Schematic of the flow around a submarine canyon during upwelling-favourable conditions from the results of Klinck (1996), Allen (1996), and Hickey (1997), all based on Astoria Canyon. Four depths of flow are sketched. Near-surface flow passes over the canyon unaffected. Flow near the shelf bottom (but above the bottom boundary layer) is advected over the canyon and drops down into the canyon. Stretching generates cyclonic vorticity that turns the flow up canyon. As this flow crosses the downstream rim of the canyon, the fluid columns are compressed and anticyclonic vorticity is generated. Flow over the slope is adverted into the canyon and upwelled onto the shelf. Deeper flow over the slope turns cyclonically within the canyon. Typical horizontal scales are 5–30 km for the width and length of the canyon and 300–600 m for the depth. The depth of the shelf is of order 100–200 m.

Our conceptual model of the flow around a submarine canyon during upwelling has the following main characteristics. During periods of southward along shelf-break flow, enhanced upwelling occurs in west coast canyons. The shelf-break current is in approximate geostrophic balance with a cross-shelf pressure gradient. Within the canyon, the flow along the shelf is inhibited by the canyon walls. The Coriolis force is reduced and the geostrophic balance is upset, producing an unbalanced cross-shore (i.e., up-canyon) pressure gradient (Freeland and Denman 1982). A three-dimensional interpretation of the flow (based on results from Klinck (1996), Allen (1996), and Hickey (1997)) shows that the near-surface flow is unaffected by the canyon and passes straight over it (Fig. 2). Deep within the canyon, the initial flow towards the head of the canyon causes the isopycnals to tilt up towards the canyon head, which in turn tends to balance the overlying barotropic pressure gradient, reducing the up-canyon flow (Allen 1996). The flow is trapped within the canyon. The lifted isopycnals induce vortex stretching, which causes cyclonic vorticity in the deep layer (Hickey 1997).

Flow near the canyon rim is strongly influenced by non-linear advective effects (Allen 1996). As the flow near the level of the rim passes over the upstream wall of the canyon, it tends to descend into the canyon and be stretched (Hickey 1997). The vorticity generated during this process turns the flow up canyon. As the flow crosses the downstream rim, anticyclonic vorticity is generated (Allen 1996). Some flow from the slope is advected into the canyon and then up and onto the shelf at the downstream wall of the canyon near the head. Most flow from the slope continues downstream past the mouth of the canyon (Klinck 1996).

The complicated flow structure around canyons imply onshore advection of any small, weakly motile zooplankton that permanently inhabit the 150- to 400-m depth stratum and probable complex effects when combined with the swimming behaviour of larger, more motile and vertically migrating macrozooplankton. Diel vertically migrating zooplankton have been observed to concentrate around canyon heads and on upper-slope bottoms (Macquart-Moulin and Patiri 1996). Acoustic backscatter observations of euphausiids around a shelf break and canyon have shown aggregation proportional to the strength of cross-isobath flow (Mackas et al. 1997). The presence of increased zooplankton abundance within canyons is consistent with evidence of increased concentrations of fish (Pereyra et al. 1969; Mackas et al. 1997) and whales (Whitehead et al. 1997).

After the methods of data collection and analysis are presented, the physical and biological observations over Barkley Canyon are given. We show that Barkley Canyon has flow characteristics very similar to those of Astoria Canyon during upwelling conditions. Our observations imply effects of the canyon near to the ocean surface that may directly influence primary productivity in the region. Weakly motile zooplankton are shown to be advected with the currents whereas euphausiids are shown to be aggregated in horizontal flow convergences (at their deep daytime depth).

Methods

Observations over Astoria Canyon (Hickey 1997) revealed variability of the flow field at remarkably small spatial scales (vertical and horizontal scales of 40 and 500 m, respectively). These observations show that, in order to interpret the motions within the canyon in terms of theory, it is necessary to acquire flow and density field information from continental shelf and slope locations upstream of the canyon. As part of the Canadian Global Ocean Ecosystems Dynamics Program (GLOBEC), we collected conductivity-temperature–depth (CTD) profiles at 16 closely spaced locations in the immediate vicinity of Barkley Canyon (Fig. 1b) as well as more widely spaced CTD profiles from the time series grid extending across the shelf from north of Brooks Peninsula (450 km north of the canyon) to the U.S.–Canada border (80 km south of the canyon). The CTD profiles included transmission meter data, which we used to index concentration and depth distribution of small suspended particulates (mostly phytoplankton). Four moorings were positioned within the canyon (Fig. 1b) and a fifth mooring, MA1, was located 30 km north of the canyon over the shelf break (Fig. 1a). Mooring MA1 has been maintained for 15 years and is used to characterize the shelf/slope circulation (Thomson and Ware...
The species were divided into groups based on three oceanic criteria: (i) The species were divided into groups based on three oceanic criteria: (i) whether they usually follow a diel migration pattern (migrators or nonmigrators), and (ii) whether they were found predominantly above or below 50 m (shallow, deep, or mixed). For each species at each time (day or night) and for each depth of tow, the number of animals per square metre was calculated by dividing the total catch per sample by the volume filtered (from the flow meter) and then multiplying by the vertical range of the tow.

Four Aanderaa RCM4 moorings (Fig. 1b) were positioned in the canyon. They were deployed on April 19, 1997, at M2, M3, and M4 and on June 4 at M1. All moorings were recovered on October 2. All instruments recorded half-hourly values of currents, temperature, and salinity. At sites M1 and M3, three RCM4s were placed at depths of 150, 250, and 350 m. Instrument depths were 250 and 350 m at M2 and 250 m at M4. All time series data from the moorings were filtered (detided) using a squared eighth-order Butterworth filter with a 40-h cutoff. According to the manufacturer’s specifications, the RCM4s have resolutions of 0.3°C and 0.05 (salinity). The threshold of the current meters is roughly 2 cm·s–1 and speeds are accurate to within 1 cm·s–1 or 2% of the actual speed, whichever is greater. Directions are accurate to 5° for speeds in the range 5–100 cm·s–1.

Diagnostic model

The diagnostic, finite-element model FUNDYS (Lynch et al. 1992; Naimie et al. 1994) was used to estimate the three-dimensional flow fields at the time of the CTD measurements. Horizontal model resolution varied from approximately 8 km in regions with depths greater than 2000 m to less than 400 m along the shelf break and around Barkley Canyon. Linear basis functions were used to approximate all variables, and under each horizontal node, there were 41 vertical nodes whose sinusoidal spacing is similar to that described in Lynch et al. (1996). Similar to the application described in Foreman et al. (2000), the tidal constituents M2, S2, K1, and O1 were also included in the computation. They account for approximately 65% of the total tidal speeds near Barkley Canyon.

The combined buoyancy- and wind-driven flows were forced with the average July 25–27 winds measured at buoy 42066 and a three-dimensional density field that was constructed through Kriging of the CTD measurements. Boundary conditions for these calculations were computed through a combination of geostrophic radiation conditions and adjustments to the surface elevations so that the vertically averaged flow passed through the boundary without any reflection. Analogous to the inversion described in

Table 1. Index of shelf versus offshore distribution affinities for the zooplankton taxa examined in this study.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Major group</th>
<th>May–June</th>
<th>July</th>
<th>Aug.–Sept.</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oikopleura</td>
<td>Larvacean</td>
<td>−0.63</td>
<td>−0.47</td>
<td>−0.73</td>
<td>−0.61</td>
</tr>
<tr>
<td>Thysanoessa spinifera</td>
<td>Euphausiid</td>
<td>−1.25</td>
<td>−0.30</td>
<td>−0.20</td>
<td>−0.58</td>
</tr>
<tr>
<td>Acartia longiremis</td>
<td>Copepod</td>
<td>−0.46</td>
<td>−0.66</td>
<td>−0.20</td>
<td>−0.44</td>
</tr>
<tr>
<td>Sagitta elegans</td>
<td>Chaetognath</td>
<td>−0.54</td>
<td>−0.08</td>
<td>−0.05</td>
<td>−0.23</td>
</tr>
<tr>
<td>Pseudocalanus spp.</td>
<td>Copepod</td>
<td>−0.07</td>
<td>−0.14</td>
<td>−0.18</td>
<td>−0.13</td>
</tr>
<tr>
<td>Paracalanus parvus</td>
<td>Copepod</td>
<td>0.04</td>
<td>0.02</td>
<td>−0.38</td>
<td>−0.11</td>
</tr>
<tr>
<td>Euphausiid larvae</td>
<td>Euphausiid</td>
<td>−0.20</td>
<td>−0.12</td>
<td>0.04</td>
<td>−0.09</td>
</tr>
</tbody>
</table>

Note: Rows (taxa) are ranked from most “nearshore” to most “offshore.” Columns indicate the evolution of this pattern with season. Negative entries in the table indicate higher biomass on the shelf, positive values indicate higher biomass seaward of the shelf break, and near-zero values indicate similar biomass at shelf and slope locations. The index is computed from 1979–1991 seasonal climatologies reported in Mackas (1992). For each time period and taxon, the index = log(average shelf biomass/average offshore biomass).
Fig. 3. Conditions during the summer of 1997. All time series were filtered with a squared eighth-order Butterworth filter with a 40-h cutoff. (a) Winds at buoy 46206. Summer upwelling-favourable winds (southeastward) prevailed from early June to mid-August. (b) Currents at 97 m at mooring MA1. The summer, southward shelf-break current was observed from mid-June until mid-August. (c) Temperature at 97 m at MA1. Periods of strong upwelling (sharply decreasing temperature) occurred in mid-June and early August. Weak upwelling (slowly decreasing temperature) occurred in mid-July prior to the time of the cruise (July 25–27, 1997).

Foreman et al. (2000), further boundary adjustments were also made to balance the estuarine flow in Juan de Fuca Strait and to produce a California Undercurrent consistent with the observations at mooring MA1 (Fig. 1a) and mooring ME03, another mooring further north along the shelf break. Because the mooring data indicated that both the meteorological and the flow fields were relatively stationary during the July 1997 GLOBEC cruise, the complete set of late-July density profiles was assumed to be synoptic for the purpose of this model calculation.

Several Lagrangian tracer experiments were carried out with the code DROG3D (Blanton 1992). This software uses a fourth-order Runge–Kutta scheme (Press et al. 1986) to advect tracers through a three-dimensional finite-element grid in a manner consistent with one or more specified current fields. In this case, five current fields were employed: one for each of the four tidal constituents and one for the buoyancy- and wind-driven flows. Although realistic biological behaviour can be incorporated into these calculations, for all our experiments, the tracers were completely passive. (See Smith et al. (2001) for an application that assumes diel vertical migration.)

Results

Regional conditions

Typical summer conditions off the coast of Vancouver Island are characterized by strong northwesterly, upwelling-favourable winds, cold near-surface water temperatures associated with upwelling, and high primary and secondary productivity. Compared with this typical condition, 1997 was an atypical year with weak winds and warm ocean temperatures because of the strong El Niño of 1997–1998 (Freeland and Thomson 1999). During the summer and autumn of 1997, a major near-surface coastal warming event occurred throughout the Northeast Pacific (Freeland and Thomson 1999). In particular, temperatures at 32 m depth at mooring MA1 were 6°C above normal. It is postulated that this warming was due to atmospheric teleconnections (Freeland and Thomson 1999), which is consistent with the observed wind anomalies.

Although summer upwelling in 1997 was generally weaker than normal, winds from a buoy off Barkley Sound (Fig. 3a) show periods of strong (5 m s⁻¹) northwesterly, upwelling-favourable winds. Currents above 200 m at mooring MA1, 30 km north of Barkley Canyon, were northwestward during June with a sharp change to southeastward flow (typical summer conditions) in mid-June (Fig. 3b). The temperature at mooring MA1 at 97 m depth (Fig. 3c) indicates strong upwelling in early June and in early August and weaker upwelling from mid- to late July.

The CTD data over the canyon were collected during July 25–27 during a period of sustained moderate to strong northwesterly winds (Fig. 3a). At mooring MA1 at 97 m depth, an intensification of southeastward flow began at about July 21. Relatively weak upwelling was observed along line C just north of the canyon. Along this line, the 24 sigma-τ surface shoaled from 30 m offshore to 8 m over the shelf break and 12 m nearshore.

Large-scale horizontal distributions of nutrient and chlorophyll were typical for the summer season, although chlorophyll levels were generally low (S. Harris, Oceanography, University of British Columbia, Vancouver, BC V6T 1Z4, Canada, personal communication). Nutrients and chlorophyll were high near the coast and decreased offshore. The higher coastal concentrations are probably related to the estuarine outflow from Juan de Fuca Strait, which transports nutrients onto the southern end of the Vancouver Island shelf (Mackas et al. 1980; Crawford and Dewey 1989) and then continues northward as the coastally trapped Vancouver Island Coastal Current (Thomson et al. 1989).

In summary, during the 1997 Barkley Canyon sampling, the winds were persistently from the north, the shelf-break current was to the south and intensifying, and upwelling over the shelf break was weak.

Water properties over the canyon

Temperature and conductivity profiles from the 16 stations over the canyon give insight into the three-dimensional structure of the isopycnal surfaces. As lines B and C from the large-scale survey are in the vicinity of the canyon, the ends of these lines are included in this analysis.

The depth of the 24 sigma-τ surface provides a good indication of the thickness of the surface mixed layer and the depth of the underlying seasonal pycnocline. Compared with offshore sampling locations, this surface is raised by 9 m over the shelf break and canyon (Fig. 4a). The timing of the canyon stations was carefully examined to ensure that the observed pattern could not be due to aliasing of displacements by internal tide motions. When examined as functions of time, the isopycnal depths showed no evidence of a 12-h tidal period.

A within-canyon vertical displacement of density surfaces is also evident deeper in the water column (Fig. 4b). Above the level of the shelf break at a depth of about 150 m, the
Fig. 4. (a) Depth of the 24.0 sigma-t surface in the vicinity of Barkley Canyon. This isopycnal is within the seasonal thermocline and provides a good indication of the depth of the mixed layer. The positions of the casts are marked with circles. Yellow and red colours outline the region of the raised pycnocline (indicative of upwelling) over the shelf break and over Barkley Canyon. The white regions are unsampled (further than 4 km from any cast). The interpolation is Gaussian with a 2.5-km standard deviation. The standard deviation was chosen to be about the minimum distance between casts so that the result of every cast is evident. The cutoff distance was chosen to be...
isopycnals are shallower over the upstream and downstream rims of the canyon but dip over the canyon itself. Away from the canyon, the relatively deep 26.4 sigma-t isopycnal surface tips strongly up towards the shore, rising from 165 m at station 10 on line C in 1240 m of water to 85 m at station 06 on line C in 92 m of water (see Fig. 1a for location of lines B and C). A similar gradient is seen along line B. Within the canyon, this isopycnal is deeper than it is over the two surrounding ridges and is only slightly shallower within the canyon than at a similar depth at line C. Over the downstream rim of the canyon, the 26.4 sigma-t surface is elevated by roughly 15 m compared with its level at comparable depths elsewhere in the canyon sampling.

Deeper isopycnals (sigma-t 26.6–26.65 lying around 150–250 m depth, not shown) are shallower over the canyon than on the surrounding shelf break, but only by 20 m. The strongest feature in these isopycnals is the cross-shelf tilt, with the stations over the shelf having isopycnals almost 100 m shallower than over the deep ocean. For isopycnals below the rim of the canyon lying between 250 and 350 m depth, there is also strong cross-shelf tilt. Within the canyon, the isopycnals near the centre of the canyon are depressed, giving a “bowl shape” to the isopycnals. Below 350 m depth, the isopycnals vary by about 50 m over the survey domain and the pattern of variation changes rapidly from isopycnal to isopycnal.

The geostrophic flow associated with the density field is described in the next section. If the flow is steady through time, the distribution of properties along isopycnal surfaces can be used as tracers indicating flow patterns. Contours of salinity on the 26.4 sigma-t surface cross the downstream rim of the canyon towards the head (Fig. 4b). If these are coincident with streamlines (as they would be in steady flow in the absence of mixing), they show strong flow over the
downstream side of the head. The contours of salinity on the 26.62 σt surface do not tend to cross the canyon wall but show higher salinity water within the canyon.

The four moorings in the canyon measured the time evolution of the water properties at three depths (350, 250, and 150 m). The time evolution at each depth was different. At the deepest instruments (350 m), changes in temperature, salinity, and density in late July were small. At 250 m, density and salinity peaked in the middle of July 25, with temperature decreasing through the end of the day. Over the 2-day span of July 23–25, σt increased by 0.02–0.04. At 150 m, only one conductivity sensor functioned. Temperature decreased sharply by more than 0.1°C·day⁻¹ from July 23 through to July 26. These observations provide evidence of the upwelling at 150 m depth and the cessation of upwelling at 250 m depth and no evidence of upwelling at 350 m depth.

Currents within the canyon

The residual (detided) currents within the canyon for July 25 (the date of the CTD survey over the canyon) are shown in Fig. 5. The flow at 350 m depth was weak and seaward within the canyon. Except at M1, flow at 250 m depth shows the theoretically expected cyclonic circulation within the canyon. At mooring M3, currents at 150 m show the expected alongshore flow across the topography. However, currents at M1 were oriented much more up canyon than expected.

A detailed picture of the three-dimensional flow was determined from the CTD measurements using the finite-element diagnostic model. At 30 m (not shown), the buoyancy-driven and wind-driven current followed the shelf break in a south-eastward direction. Interaction with the bathymetry caused the current to bend, to cross the isobaths, and to turn cyclonically over the canyon heads. The model output for the horizontal velocity at 150 m depth (Fig. 6) shows a fully developed cyclonic eddy over the head of Barkley Canyon. This eddy is well resolved by the four CTD stations at the head of the canyon. Current vectors from the two current meters at this depth are superimposed in the figure. The measured currents agree well with the modeled flow.

Particulates above the canyon

The percent transmission data were used to determine the particulate concentration, p, over the canyon from

$$ p = -4.0 \, m^{-1} \ln \left(\frac{\% \text{ transmission}}{92\%} \right) $$

where 92% was the observed clear-water transmission over the 25-cm path length of the transmissometer. The 0- to 50-m vertically integrated particulate concentration was higher over the shelf than over the deep ocean by a factor of about.
The canyon was a region of slightly lower numbers of particulates than the nearby slope by about 10%.

All stations had low transmission near the surface. The four ocean stations (ends of lines B and C) also had a second minimum in transmission at 40 m depth. The depth of the bottom of the surface layer varied over the domain and was distinctly shallower over the canyon with the same pattern as that of the depth of the pycnocline (Fig. 4a).

Zooplankton distribution

Vertically integrated zooplankton abundances of most species were significantly lower in the centre of the canyon (station C3) than at the stations around the edge of the canyon. (The one exception was *Pseudocalanus* spp., which was abundant both at the canyon axis (C3) and in the eddy region (B2).) Table 2 gives the number of animals per square metre for the dominant genera at each of the four canyon margin stations.

Four species were shallow nonmigrators (*Acartia longiremis*, *Oikopleura* spp., *Oithona* spp., and *Paracalanus parvus*). As these species were presumably equally well sampled by the 50- and 250-m (or deep) tows, these pairs of tows can be used to assess sampling variability. The standard deviation of the distribution was found to be 10%; this number includes counting variations and some estimate of patchiness.

Discussion

In this section, we compare the water property results from Barkley Canyon with our conceptual model of flow around a submarine canyon noted in the Introduction and then interpret the observed zooplankton distribution in terms of how these flow fields advect zooplankton across and through the canyon.

The July 1997 observations support the dynamic theory that upwelling within Barkley Canyon is maintained by a cross-shore pressure gradient. To show this, we note that the residual currents are approximately geostrophic so that the geostrophic velocity above the rim of the canyon provides a measure of the cross-shore pressure gradient. Consequently, the alongshore velocity measured at 97 m depth at mooring MA1 should be directly proportional to the cross-shore pressure gradient at the same depth. Similarly, the vertical displacement of isotherms at the head of the canyon is a measure of upwelling within the canyon. Over the 6-month deployment of the moorings, the changes in temperature produced by vertical displacement of isotherms (upwelling within the canyon) were strongly correlated with the 97-m alongshore current (cross-shore pressure gradient; Fig. 7). The correlation between variations in the alongshore cur-

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Depth (m)</th>
<th>B2 (m⁻²)</th>
<th>D2 (m⁻²)</th>
<th>B4 (m⁻²)</th>
<th>D4 (m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oikopleura</td>
<td>0–50</td>
<td>4 800</td>
<td>2 800</td>
<td>5 300</td>
<td>11 000</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>910</td>
<td>No data</td>
<td>7 300</td>
<td>510</td>
</tr>
<tr>
<td>Thysanoessa spinifera</td>
<td>0–250</td>
<td>61</td>
<td>2.7</td>
<td>0</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>360</td>
<td>58</td>
<td>6.9</td>
<td>1 000</td>
</tr>
<tr>
<td>Acartia longiremis</td>
<td>0–50</td>
<td>7 000</td>
<td>3 400</td>
<td>3 400</td>
<td>2 500</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>4 800</td>
<td>No data</td>
<td>890</td>
<td>1 000</td>
</tr>
<tr>
<td>Sagitta elegans</td>
<td>0–250</td>
<td>370</td>
<td>49</td>
<td>140</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>480</td>
<td>190</td>
<td>55</td>
<td>230</td>
</tr>
<tr>
<td>Paracalanus parvus</td>
<td>0–50</td>
<td>40 000</td>
<td>29 000</td>
<td>95 000</td>
<td>81 000</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>27 000</td>
<td>No data</td>
<td>43 000</td>
<td>27 000</td>
</tr>
<tr>
<td>Euphausiid larvae (both Euphausia pacifica and Thysanoessa spinifera)</td>
<td>0–50</td>
<td>5 500</td>
<td>490</td>
<td>8 200</td>
<td>3 300</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>910</td>
<td>No data</td>
<td>1 300</td>
<td>170</td>
</tr>
<tr>
<td>Calanus marshallae</td>
<td>0–250</td>
<td>7 400</td>
<td>8 600</td>
<td>0</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>5 500</td>
<td>5 100</td>
<td>780</td>
<td>2 700</td>
</tr>
<tr>
<td>Oithona spp.</td>
<td>0–50</td>
<td>15 000</td>
<td>6 800</td>
<td>25 000</td>
<td>29 000</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>1 700</td>
<td>No data</td>
<td>9 700</td>
<td>3 900</td>
</tr>
<tr>
<td>Metridia pacifica</td>
<td>0–250</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>210</td>
<td>0</td>
<td>220</td>
<td>3 600</td>
</tr>
<tr>
<td>Euphausia pacifica</td>
<td>0–250</td>
<td>690</td>
<td>19</td>
<td>71</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>620</td>
<td>270</td>
<td>130</td>
<td>270</td>
</tr>
<tr>
<td>Eukrohnia hamata</td>
<td>0–250</td>
<td>46</td>
<td>2.7</td>
<td>120</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>13</td>
<td>39</td>
<td>35</td>
<td>190</td>
</tr>
<tr>
<td>Neocalanus plumchrus</td>
<td>0–250</td>
<td>0</td>
<td>0</td>
<td>1 700</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>0</td>
<td>470</td>
<td>0</td>
<td>590</td>
</tr>
<tr>
<td>Sagitta scrippsae</td>
<td>0–250</td>
<td>77</td>
<td>25</td>
<td>58</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>26</td>
<td>49</td>
<td>14</td>
<td>93</td>
</tr>
</tbody>
</table>

Table 2. Zooplankton distribution.

Note: Station B2 is located at the head of Barkley Canyon on the upstream side. The day samples were collected at 19:12 PDT on July 25 and the night samples were collected at 00:00 PDT on July 26. B2 is located at the head of the canyon on the downstream side (day: 08:11 on July 25; night 02:48 on July 25). B4 is located at the mouth on the upstream side (day: 14:57 on July 25; night 22:49 on July 25). D4 is located at the mouth on the downstream side (day: 16:24 on July 25; night 00:21 on July 25).
Fig. 7. Alongshore velocity (solid line) at 97 m at mooring MA1 through the summer of 1997 plotted with the temperature (dashed line) at 230 m at M1. As the flow is to first-order geostrophic, the alongshore velocity is proportional to the cross-shore pressure. The vertical displacement of isotherms (a measure of upwelling) is proportional to changes in temperature. The strong correlation between the alongshore velocity and the temperature supports the theory that cross-shore pressure controls the strength of upwelling.

Very deep within the canyon (350 m), the flow was cyclonic but weak, the isopycnals were nearly level, and no upwelling (temperature decrease with time) was occurring. As the upwelling-favourable flow at 97 m at MA1 during late July was weak and nearly constant, active upwelling deep in the canyon was apparently not occurring. It would appear that a depth of 350 m was below the level of strongly cyclonic flow in Barkley Canyon.

At intermediate depth within the canyon (250 m), the flow was cyclonic, the isopycnals were bowed downwards, and upwelling (higher salinity, lower temperature) had occurred but was ceasing. These observations are consistent with the theoretically modeled deep flow shown schematically in this study.

At near-rim depth (150 m), the observations are in general agreement with previous knowledge except for the presence of the strong eddy. Cyclonic circulation at the rim of the canyon was also seen over Astoria Canyon (Hickey 1997) but only during relaxation of upwelling. Numerical models have predicted cyclonic vorticity but not a closed eddy (Allen 1996; Klinck 1996). The flow at 150 m over Barkley Canyon is consistent with the midlevel flow pattern based on theoretical modeling studies and shown schematically in this study. Salinity contours crossed isobaths and temperature was decreasing, suggesting that upwelling was occurring at this level. The shape of the isopycnal surfaces at this depth (high downstream of the canyon) is consistent with flow up canyon.

In summary, Barkley Canyon has a substantial influence on currents and water property distributions during upwelling similar to that observed over a much longer canyon (Astoria Canyon) to the south. At the start of the canyon field survey (July 25), water at 150 m depth was flowing coastward up the canyon and upwelling over the downstream rim of the canyon. At 250 m depth, upwelling was ceasing and the water recirculating within the canyon. At 350 m depth, upwelling was not occurring.

Effect of canyon circulation on zooplankton distributions

Except for the strongly migratory euphausiids, the distributions of the zooplankton species in the vicinity of the canyon were consistent with passive advection by the currents around the canyon. Species resident deeper in the water column were displaced towards the head of the canyon, particularly on the downstream side of the canyon, consistent with the flow observed at 150 m.

Shallow nonmigrators

Species that were found only in the upper 50-m depth stratum both day and night were generally found at the same cross-shore location over the canyon as they are in other places along the southern shelf. *Acartia longiremis*, a shelf species, was found primarily at station B2 in the region of the eddy. The eddy was weak near the surface and probably was not able to trap tracers. This difference could be explained by the fact that the flow in this region was more seaward than at station D2 downstream. *Oikopleura* spp. and *Oithona* spp. (but mostly *spinifera*) were found primarily at the mouth of the canyon. As these are shelf-to-shelf-edge and shelf-edge-to-oceanic species, their distribution over the canyon appears to be similar to that away from the canyon.
Deep nonmigrators

Neocalanus plumchrus is a subarctic oceanic species that has a strong seasonal ontogenetic vertical migration (Miller and Clemons 1988) but weak or no diel vertical migration (Mackas et al. 1993). By July, the bulk of its population was dormant stage 5 copepodites, normally located in depth strata 400–700 m. In our canyon samples, *N. plumchrus* was found only at the two mouth stations and at station D2, the station downstream of the head. The presence of *N. plumchrus* at D2 could be a consequence of the deep-up-canyon flow, which brings oceanic water up the upstream canyon and then perhaps onto the shelf.

Oceanic species *Euprosthenocera hamata* was found primarily at the downstream station at the mouth of the canyon. This distribution could reflect a pattern similar to that of *N. plumchrus* but shifted offshore. As flow at the downstream stations is primarily onshore, species usually further offshore than the shelf edge could be advected into the vicinity of station D4. Such a pattern would suggest that *N. plumchrus* should be more abundant at station D4 as well; during the day tow, it was not, but during the night tow, it was more abundant.

The oceanic chaetognath *Sagitta scrippsae* was observed at all stations in about equal numbers. Like *Paracalanus*, *S. scrippsae* is near the northern limit of its latitudinal range, and high abundance indicates poleward transport of warm water. Unlike *Paracalanus*, its vertical distribution is centred deep in the water column. Off British Columbia, it is normally found in deep tows from locations seaward of the continental shelf. Presence of this species at the head of the canyon therefore implies a shift shorewards compared with its general distribution.

Calanus marshallae, a shelf species, was found at the head of the canyon with no upstream/downstream asymmetry. Like *N. plumchrus*, most of the July population was dormant (and deep) stage 5 copepodites.

Mixed-depth migrators

Sagitta elegans, a shelf-edge-to-shelf species, was found at all stations, implying a distribution over the canyon similar to that over the southern shelf in general.

Deep migrators

The larger bodied, strongly migratory adults and late juve-
the upstream wall causes flow up canyon, increasing the pressure there and again (geostrophically this time) decreasing the flow away from the upstream wall but leaving a marked cross-canyon tilt to the isopycnals. The flow above the rim deepens and fills the space left by the depressed isopycnals below the rim. In effect, as flow moves over the canyon from the upstream wall, it “falls” into the canyon.

Given the observed isopycnal stretching, one can estimate the stretching vorticity (Hickey 1997). Subtracting the height of the 26.3 isopycnal surface from the 26.5 isopycnal surface, we observe stretching of a factor of almost 2 (21–35 m), similar to the results over Astoria Canyon. If we assume that the upstream flow has no relative vorticity, we can estimate the vorticity within the canyon using conservation of potential vorticity:

\[PV = \frac{\zeta + f}{h} \]

where \(\zeta \) is the relative vorticity, \(f \) is the planetary vorticity, assumed uniform on the scale of the canyon, and \(h \) is the vertical thickness between two isopycnals. The observed stretching (21–35 m) implies a vorticity of 1.7f, which is larger than the value of 0.3f computed by the diagnostic model. This overestimation of the vorticity is expected, as conservation of potential vorticity neglects all dissipation mechanisms.

A simple estimation of the generated eddy was made by simplifying the observed upstream thickness as

\[

g_{(B2), \ y = 0 \ km} = 8.3 \ km \\
g_{(B3), \ y = 8.3 \ km} = 16.7 \ km \\
g_{(A4), \ y \geq 25.0 \ km}
\]

where \(h \) is the depth between the two isopycnals at a station and \(y \) increases offshore. Linear interpolation was used between the points given above.

The over-canyon thickness was specified at the same \(y \) positions as that upstream but using stations C2, C3, C4, and A4. The domain is taken from the 150-m isobath out 100 km. A flux of 37 × 10³ m³·s⁻¹ (equivalent to 3 cm·s⁻¹ over 100 km through a layer 12.4 m deep) is assumed to flow through this section. Inversion of the vorticity to velocity is performed by relaxation (Press et al. 1986). The result is a large, strong eddy centred over the canyon. The estimated eddy is about a factor of 2 stronger than the observed eddy and is located further towards the mouth of the canyon. This overestimation is expected, as all dissipation mechanisms are neglected.

Published prognostic models (as opposed to the diagnostic numerical model described in the Results section above) have not predicted such an eddy. This omission is caused by the lack of stretching generated in the models due to too-smooth topography (Klinck 1996) or use of a layer model with thick layers (Allen 1996). A smooth, Gaussian-style canyon is much narrower towards the head than the mouth. This shape of canyon generates significantly less stretching than a more rectangular canyon such as Astoria Canyon or Barkley Canyon (Allen et al. 1999). The simple demonstration given here illustrates that the models will reproduce the eddy once the stretching is correct. Klinck et al. (1999) numerically simulated such an eddy.

As the eddy is 10 km wide compared with the tidal excursion of 0.9 km and has a current speed of 2 cm·s⁻¹, it is expected to trap tracers (at 150 m) in a Lagrangian sense (Foreman et al. 1992). Eddies and other recirculating flows can trap passive tracers but do not aggregate them. However, the euphausiid species \(E. \ pacifica \) and \(T. \ spinifera \) were observed to be aggregated in the eddy region. Although flow in the ocean is nondivergent in three dimensions, there can be regions of horizontal convergence (divergence). As the euphausiids can maintain their preferred depth against the weak vertical velocities, they can be aggregated by horizontal convergence. Examples are given in Mackas et al. (1997)
and Simard et al. (1996) where euphausiids are seen to aggregate in regions of strongly sloping bottom topography due to flow toward the slope.

Regions of strong convergence are seen at depths occupied by euphausiids during the day. Euphausiids have been shown to aggregate at the shelf edge upstream of the canyon at about 100 m depth (Mackas et al. 1997). Using our diagnostic model, the horizontal convergence \(-\partial u/\partial x + \partial v/\partial y\) at 100 m was calculated. (Here, \(u\) and \(v\) are the horizontal velocity components in the \(x\) and \(y\) direction, respectively). Very strong regions of convergence occur particularly in the region where the eddy flow crosses the downstream rim. The horizontal convergence at 100 m shows stronger convergence at B2 than at the other three rim stations. Backward trajectories of 5-h length were constructed. Only zooplankton caught at B2 passed through a convergence zone just before being trapped. The observations show that the shelf-to-shelf-edge species \(T. spinifera\) aggregated strongly at B2. The shelf-edge-to-oceanic species \(E. pacifica\) had twice the numbers at B2 as at D2.

In order to test the retention characteristics of the eddy, several Lagrangian tracer simulations were carried out using the diagnostic model. Tracers were released over a 6 x 5 km horizontal grid centred over the eddy and tracked for 10 days. Release depths were 50, 150, 250, and 350 m, respectively. Due to the strong shelf-break current, all the tracers released at 50 m moved southwesterly away from Barkley Canyon. However, at all other depths, some of the tracers were retained within the eddy. More tracers starting at 250 m were retained than at the other depths, and in all cases (after 10 days), the tracers had moved to the northeast side of the canyon head and were at depths between 90 and 130 m above the bottom. Figure 8a shows the grid of initial grid seedings and the locations that were trapped in the eddy when released at 150 m depth. Figure 8b shows the locations of these trapped drogues after 10 days. Further experiments revealed that the precise release time relative to tidal flood, ebb, spring, or neap currents, made very little difference. Thus, it appears that the eddy both traps and converges passive tracers.

In summary, the west coast of Vancouver Island experienced weak upwelling in 1997 probably due to the effects of the 1997–1998 El Niño. The GLOBEC cruise at the end of July took place at a time of weak upwelling-favourable winds and a southeastward shelf-break current. Enhanced upwelling and onshore flow were observed through Barkley Canyon.

Water properties showed enhanced upwelling at the thermocline down to a depth of about 200 m. Observations of canyon effects so close to the surface are new, although they are unlikely unique to Barkley Canyon. Below 200 m, the isopycnals are bowl-shaped, dipping in the centre of the canyon. The spreading isopycnals over the canyon imply water column stretching (and thus cyclonic vorticity) over the canyon. The near-surface flow is generally across the canyon. Deeper, near rim level, the flow turns up the canyon as it crosses the north rim of the canyon. The flow crosses the south rim of the canyon turning to join the southeastward flow. Thus, the canyon shifts the shelf-break current shorewards. At the head towards the north side of the canyon, a strong eddy forms. This eddy is consistent with vorticity generated by the observed vortex stretching. Deeper in the canyon, the flow turns cyclonically.

Most zooplankton are simply advected by the currents. Those near the surface are carried across the canyon with little deflection from their normal cross-shelf position. Those deeper are advected shorewards by the currents through the canyon. Euphausiids are aggregated near the head of the canyon due to the strong horizontal convergence associated with the eddy.

Acknowledgments

The authors extend their thanks to the crew and scientists of the CCGS *John P. Tully* during the west coast GLOBEC cruise of July 1997. Steve Romaine carried out most of the zooplankton net tow sampling. Moira Galbraith identified and counted the zooplankton. This is a contribution of GLOBEC cosponsored by the Natural Sciences and Engineering Research Council of Canada and Fisheries and Oceans Canada.

References

