

Neptune OBS

Operation Guide.

Part No. MAN-OBS-0002

Designed and manufactured by Güralp Systems Limited 3 Midas House, Calleva Park Aldermaston RG7 8EA England

Proprietary Notice: The information in this manual is proprietary to Güralp Systems Limited and may not be copied or distributed outside the approved recipient's organisation without the approval of Güralp Systems Limited. Güralp Systems Limited shall not be liable for technical or editorial errors or omissions made herein, nor for incidental or consequential damages resulting from the furnishing, performance, or usage of this material.

Issue A 2009-08-21

Table of Contents

1	Introduction

2	0	perat	tion Guide	4
	2.1	Prin	ncipals of operation	4
	2.2	Ром	wer monitoring and control	4
	2.1	2.1	Operation	4
	2.1	2.2	Configuration	8
	2.3	Dep	plovment	10
	2.4	Rec	covery	17

3	Appendic	Ces	20
	3.1 Main (Connector pin-out	20
	3.2 Test h	arness pin-outs	22
	3.2.1	Overview	22
	3.2.2	Aquadopp test connector	23
	3.2.3	Differential Pressure Gauge test connector	24
	3.2.4	Battery test connectors	25
	3.2.5	Power Supply test connectors	25
	3.2.6	RS232 Data Out test connector	
	3.2.7	Ethernet test connector	

4	Revision history	r	28
---	-------------------------	---	----

1 Introduction

Güralp Systems' "Neptune" Ocean Bottom System is a state-of-the-art multi-sensor unit comprising:

- a CMG-5T triaxial true broadband feedback strong motion $(\pm 2g)$ accelerometer;
- a CMG-1T triaxial true broadband (360s 50Hz) feedback seismometer;
- a CMG-DM24/7 24-bit, seven channel digitiser module;
- a CMG-EAM enhanced acquisition and communications module; and
- GSL's unique "Virtual Sphere" microprocessor-controlled orientation and levelling system

all encased in a cast titanium sphere capable of withstanding immersion in up to 3,000 metres of water.

A submersible 25-pin connector provides inputs for an external Nortek Aquadopp triaxial Doppler-effect current flow rate meter, an external differential pressure gauge main 48V

differential pressure gauge, main 48V power and an auxiliary 12V back-up battery as well as data outputs via RS232 and TCP/IP Ethernet.

The integrated CMG-EAM provides a single, easy-to-use, web-based interface for control, configuration and monitoring of all components. Sophisticated power-control provide electronics fine-grained monitoring and control of power consumption, minimising current requirements and maximising battery life.

The CMG Neptune OBS embodies more than twenty years of

experience in designing and deploying ocean-bottom seismometry systems in some of the harshest and most challenging environments on the planet.

2 Operation Guide

2.1 Principals of operation

The CMG Neptune OBS contains two seismometers, a CMG-5T strong motion triaxial accelerometer and a CMG-1T weak motion triaxial seismometer.

Full details and specifications of the CMG-5T components are contained in Güralp manual MAN-050-0001, available for download from <u>http://www.guralp.com/documents/MAN-050-0001.pdf</u>.

Full details and specifications of the CMG-1T components are contained in Güralp manual CMG-1OBS, available for download from <u>http://www.guralp.com/support/manuals/pdf/1OBS.pdf</u>.

The outputs from these two systems, along with the output of the differential pressure gauge, are connected internally to a CMG-DM24/7 digitiser module. Full details and specifications for this module are contained in Güralp manual MAN-D24-0004, available for download from <u>http://www.guralp.com/documents/MAN-D24-0004.pdf</u>.

The outputs from the CMG-DM24/7 and the Aquadopp flow meter are connected internally to an embedded CMG-EAM acquisition and communication module. Full details for this module are contained in Güralp manual MAN-EAM-0001, available for download from http://www.guralp.com/documents/MAN-EAM-0001.

The EAM software has been extended to include functions specific to the CMG Neptune OBS. These are:

- an enhanced power monitoring and control system; and
- deployment and recovery sequence automation.

These functions are described in the sections that follow.

2.2 Power monitoring and control

2.2.1 Operation

The CMG Neptune OBS includes a power monitoring and control facility which can measure and switch the current flowing to and from the various components of the system. This can be accessed via the configuration interface of the CMG-EAM using a web browser.

The configuration interface of the CMG-EAM is described in detail in MAN-EAM-0001. The following description assumes some familiarity with the use of this interface.

To access the power monitoring and control facility, select "Digital I/O" from the Control menu:

The following screen will appear:

I/O line status

I/O line status and control.					
Line	Status		Operations		
	Output, low (off)				
	voltage 11.5		View details/settings		
Aux_power	Bus Voltage (V)		Set to input		
Auxiliary (battery) power	current Current (A)	0.001	Set output low (switch off)		
	power		Set output high (switch on)		
	Power (W)	0.01			
	Output, low (off)				
	voltage	11.53	View details/settings		
Data_Out	Bus voitage (v)		Set to input		
Data Out power	Current (A)	0.107	Set output low (switch off)		
	power	1.23	Set output high (switch on)		
	Power (W)	1.25			
	Output, high (on)				
	voltage Rus Voltage (V)	11.53	View details/settings		
Ethernet_power	Bus Volcage (V)		Set to input		
Ethernet auxiliary power	Current (A)	0.001	Set output low (switch off)		
	power	0.01	Set output high (switch on)		
	Power (W)	0.01			
	Output, low (off)				
	voltage	11.53	View details/settings		
Ext0_power	Bus voltage (V)		Set to input		
External power outlet 0	Current (A) 0.001		Set output low (switch off)		
	power		Set output high (switch on)		
	Power (W)	0.02			

The screen is divided into sections, each dealing with a different current switch/measurement point, known as a "line".

Each line has a system name and a user name. User names can be configured individually (see Section 2.2.2 on page 8). For example, the first line displayed in the previous diagram has a system name of "Aux_power" and a user name of "Auxiliary (battery) power".

Next to the name of each line is displayed the line's status: low (off) or high (on). A line can be turned on and off with the "Set output low" and "Set output high" buttons. **Note**: the Neptune OBS systems are shipped with many power lines set low (turned off) in order to avoid unintentional battery drain. The default status of each line at powerup can be configured (see Section 2.2.2 on page 8).

Below the status is displayed the measured voltage, current and power.

The buttons marked "View details/settings" displays a screen similar to the following. The screen for Aux_power is used for illustration:

Line details

Auxiliary (battery) power

Line ID: Aux_power

I/O control

Properties

Property	Туре	Current value		Change	
voltage Bus Voltage (V)	Read only	11.54			
current Current (A)	Read only	0.001			
power Power (W)	Read only	0.01			
low_voltage_threshold Low voltage cut-off threshold (V)	Read/write	0.000 [0.000		Set
cutoff_hysteresis Cut-off hysteresis (V)	Read/write	0.000 [0.000		Set
system True if this line is internal to the system	Read only	false			
Property	Туре	Current value		Change	
Refresh Return to front page		-			

Most of the features of this screen duplicate those on the main "Digital I/O" display. A "Refresh" button provides quicker access to the latest figures if a line is being monitored in real time.

The two fields not present on the main "Digital I/O" display allow the configuration of under-voltage monitoring. If a voltage is typed into the "Lower voltage cut-off threshold" field and the "Set" button pressed, the system will cut power to the associated subsystem if the supply voltage falls below the figure entered. In order to prevent rapid switching when the supply power is very close to the threshold, a hysteresis value can also be entered. The supply voltage must rise to the sum of the threshold voltage and the hysteresis voltage before power to the associated subsystem is restored.

The allocation of lines to hardware components for the CMG Neptune OBS is as follows:

Line (system name)	Function	
Data_Out	Main 48V power feed (conditioned)	
Aux_power	Auxiliary battery	
Port_A	Power to embedded DM24/7	
Sensor_power	Power to CMG-1T sensor	
Ext0_power	Power to CMG-5T sensor	
Ext1_power	Power to D.P.G.	
Port_D	Power to Aquadopp	

Note: both the incoming 48V power and the auxiliary battery power are both fed through a power conditioning circuit before being routed to the power control sensors, so it is the conditioned voltage that is monitored, not the supplied voltage.

Note: The auxiliary battery will not be used unless the output for Aux_power is set high, in order to conserve battery life during shipping and deployment. The status of this line immediately after the unit boots can be configured: see Section 2.2.2 on page 8.

2.2.2 Configuration

To configure the user names of the power lines, select "All options" from the "Configuration" section of the main menu:

<u>Passwords</u>	
Removable disk	
Configuration	
All options	
Hostname	
Save/Restore	
Data transfer/recording	
Disk recording	
<u>Serial ports</u>	
Services	
Tasks	

From the resulting menu, select "GPIO labels and power switch settings. The following screen is displayed, from where it is possible to edit the user labels of the :power lines. Press the "Submit" button after making any changes.

GPIO labels

This table specifies the labels used for each of the GPIO lines.

System name	User label
Aux_power	Auxiliary (battery) power
Data_Out	Data Out power
Ethernet_power	Ethernet auxiliary power
Ext0_power	External power outlet 0
Extl_power	External power outlet 1
Ext2 power	External power outlet 2

Below the GPIO labels configuration section, a number of drop-down menus allow you to configure the state (on or off) which each line will assume when the unit boots when power is first applied or after a power interruption. This part of the screen is shown overleaf.

For each line, select the desired start-up state, then click the "Submit" button to save your changes.

Note: no immediate changes to individual lines will be made as a result of using this feature. The settings only affect the lines after a reboot of the unit.

Powerup state

This table sets the initial condition for the power switches following a system power up.

WARNING: Changing these settings only makes sense on lines where the hardware is configured to powerup in the disabled state, (Usually OBS systems). On other systems changing the setting could result in startup power transitions that might confuse external equipment.

System name	Powerup state
Aux_power	Power Off 🗸
Data_Out	Power On 🗸
Ethernet_power	Power On 🗸
Ext0_power	Power Off 🗸
Extl_power	Power Off $ $ \vee
Ext2_power	Power Off $ $ \vee
Ext3_power	Power Off ~
Ext4_power	Power Off 🗸
Port_A	Power On 🗸
Port_C	Power On 🗸
Port_D	Power On 🗸
Port_E	Power On 🗸
Port_F	Power On 🗸
Port_G	Power On 🗸
Sensor_power	Power On 🗸
Home Help Expert	Submit

Note: The auxiliary battery will not be used after the unit is rebooted unless the power-up state for Aux_power is set to "Power On", in order to conserve battery life during shipping and deployment. The battery can still be turned on and off using the appropriate controls on the "I/O Line Status" screen, as described in Section 2.2.1 on page 4.

2.3 Deployment

The CMG-EAM embedded in the Neptune OBS has a facility for automating the instrument deployment sequence, which involves checking the position of the OBS bowl (the internal, moveable instrument carrying platform) and, if it needs to be moved, locking the sensor masses (if not already locked) and then entering an iterative sequence of tilts, turns and orientation measurements until the bowl is precisely level. The instrument masses are then individually unlocked and centred. This whole sequence is triggered via controls within the configuration interface of the CMG-EAM, using a web browser.

The configuration interface of the CMG-EAM is described in detail in MAN-EAM-0001. The following description assumes some familiarity with the use of this interface.

To initiate the deployment sequence, choose the entry for the sensor from the "Control" menu (the name of this entry will change with the serial number of the component).

Scroll down the resulting page to the section headed "Ocean Bottom Systems"

The following screen is displayed:

Ocean Bottom Systems

Deploy-	Level	Return to Datum
Deploy OBS system (levels the bowl, unlocks and centres the masses).	Level OBS bowl Bowl Single bowl	Returns bowl leveller to datum position.
Run	Run	Run
Unlock OBS Components-	Lock OBS Components	Centre OBS Components
Unlock each of the OBS components.	Lock each of the OBS components.	Centre each of the OBS components.
Run	Run	Run
	-Recover	1
Align bowl	Recover OBS system	
Align OBS bowl.	(locks the masses and returns bowl leveller to	
Bowl Single bowl 🗸	datum).	
Run Run		

In normal use, only "Deploy" (described here) and "Recover" (described in Section 2.4 on page 17) will be required. Both of these run sequences of individual commands and it is possible to run any of these individual commands from this screen.

The deployment sequence is:

- Level level the OBS bowl;
- Align Align the OBS bowl (to magnetic north);
- Unlock OBS Components- unlock each sensor in turn; and
- Centre OBS Components centre each sensor masses in turn.

The entire sequence can be run in the correct order by clicking the "Run" button in the "Deploy" box. This produces a large amount of diagnostic output to signify the progress of the operation. The bowl alignment procedure is iterative and several passes may be needed to achieve an acceptable attitude. Typical output is reproduced here, with explanatory notes in blue:

Digitiser Control

GSLA-1717

Deploy

```
GSLA 171700 CMG1T2M Command Mode
O blocks in buffer | 256 blocks free
Guralp Systems Ltd - DM+FW v.106 mgs 17/08/09 (Build 33)
  ok_1717
DEPLOY
Deploy System? y/n
? y x-3 y-258
                        (the bowl is not aligned, so we will
Z Mass Locking..
                        lock the masses before moving it)
  0 249
Success
Vertical Mass Locked (Turned)
Mass Position -102%
N/S Mass Locking..
  7 249
Success
North/South Mass Locked (Not Turned )
Mass Position 102%
E/W Mass Locking..
 10 249
Success
East/West Mass Locked (Not Turned )
Mass Position 102%
                        (these numbers show the current bowl
    42
                        tilt value...)
    42
    41
    39
    40 Limit Switch
                    1 1 0 1 1 1 1 1 now 1 1 1 0 1 0 1 1
    39
       1 1 0 1 1 1 1 1
    40 1 1 0 1 1 1 1 1
    40 1 1 0 1 1 1 1 1
    40 1 1 0 1 1 1 1 1
    41 1 1 0 1 1 1 1 1
    41 1 1 0 1 1 1 1 1
    42 1 1 1 1 1 1 1 1 TiltNull set 41
                        (...and these the rotation value)
     2
     1
  Tilt |Rotate|
                   Х |
                          Y
0
           0
                   -3
                        -260 << Bowl Datum x-3 y-258 x-4
Y450
                        (bowl now at datum and a new target
                        orientation has been calculated)
     0
    11
    48
    84
   120
                        (bowl tilting)
```

				154
				190
				224
				261
				295
				331
				365
				404
				440
				455
				453
	Т62	y249	x-5	451
(hand antations)				-
(bowl rotating)				0
				1
				5
				10
				12
				16
				10

this sequence will continue changing gradually. Several hundred lines of output have been suppressed.

59 60 60 60 60 60 60 61	
Tilt Rotate X	Y
61 452 51	-20 x50 y20 R447
	(1 st approximation achieved,
	2 nd calculated)
451	
451	
449	(bowl tilting)
446 x50 y19 T78	
61	
61	
61	(bowl rotating)
61	
62	
62	
°∠	

this sequence will continue changing gradually. Several hundred lines of output have been suppressed.

77 77	447	63	44 x62	y-43	x62	y-43	R432
447 447 443 442 441 439 437 435 433 x50	y-50	т77					
77 77	433	50	50 x49	y-50	x49	y-50	R419
434 433 431 430 428 426 424 422 419 x33	y-53	т72					
77 77 77 77 77 77 77 77 77 76 76 76 76 7	420	27	35 x27	y-35	x27	<u>у</u> -35	R411
419 419 417 415							
413 411 x20	y-32	т71					

73 74 73 73 72 72	411	19	31	x18	y-31	x19	y-31	R404	
411 411 409 407 405 ×14	y-28	T70							
72 72 72 72 72 71 71	405	12	27	x12	y-26	x11	у-26	R400	
404 404 402 400 x8	y-24	т67							
71 72 71 70 71 70 70 70 70 69 68				-	12	_	10 -	202	
69 400 400 397 x4	400 y-16	6 T66	17	х5	у-17	х5 у	-18 R	397	
69 69 68 68 68 68 68 68 67 67	398	2	11 x2	2 у-	12 x2	y-1	1 < B	owl Let	vel
SingleBowl Z LOCKED N, Tilt Ro	Syster /S LOCI ptate	n : Leve KED E/W I X	lled LOCKE Y	D I	(su	ccess)			
67 Z Mass UnLo 54 249	398 ocking	3	11	(no	w unlo	ock the	e mass	es)	

59 248 61 247 59 246 57 245 54 244 53 243 57 242 57 241 56 239 60 238 60 237 61 236 61 233 61 233 61 233 61 233 61 232 56 231 56 230 56 230 56 229 57 228 58 227 59 226 56 224 59 223 61 222 59 221 59 221 59 220 54 217	(the first number is the current drawn by the locking motors, the second a simple count-down timer)
60 216 32 215	
Success	
Z Mass Centring	
-85 59	
Success	
Vertical Mass_Unlocked Centre	d Turned
N/S Mass UnLocking	
8 249	
Success	
N/S Mass Centring	
2047 59 1 1 1 1 1 1 1 1	128 -1 0
-1693 58 1 1 1 1 1 1 1 1	96 1 0
2047 57 1 1 1 1 1 1 1 1	72 -1 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 -1 0
-1582 53 1 1 1 1 1 1 1 1	30 1 0
-823 52 1 1 1 1 1 1 1 1	30 2 0
2047 51 1 1 1 1 1 1 1 1	22 -1 0
2047 50 1 1 1 1 1 1 1 1	22 -2 0
-4 49	
Success	
North/South Mass_Unlocked Cen Mass Position 0%	tred Not Turned

E/W Mass UnLocking.. 10 249 Success E/W Mass Centring.. -772 59 1 1 1 1 1 1 1 1 1 128 1 0 2047 58 1 1 1 1 1 1 1 1 96 -1 0 72 1 -254 57 1 1 1 1 1 1 1 1 0 1379 56 1 1 1 1 1 1 1 1 54 -1 0 85 55 Success East/West Mass Unlocked Centred Not Turned Mass Position 4% ok 1717

Command 'Deploy' run successfully

Generated at 2009-08-18T11:19:11Z by digitiser-control.cgi 2.0.2 . Portions of output copyright (c)2009, Guralp Systems Ltd..

2.4 Recovery

The CMG-EAM embedded in the Neptune OBS has a facility for automating the instrument pre-recovery sequence, which involves locking the instrument masses prior to any potentially violent movements. This is accessed via the configuration interface of the CMG-EAM using a web browser.

The configuration interface of the CMG-EAM is described in detail in MAN-EAM-0001. The following description assumes some familiarity with the use of this interface.

To initiate the deployment sequence, choose the entry for the sensor from the "Control" menu (the name of this entry will change with the serial number of the component).

	^	
Main menu		Ocean Bot t
eam2217		-Deploy
Summary System events System status Version and serial numbers	Ξ	Deploy OBS syste (levels the bow) unlocks and cent masses).
Control Digital I/O Port A sensor GSLA-1717 Reboot Services Tamper lines		Unlock OBS Co Unlock each of components.

Scroll down the resulting page to the section headed "Ocean Bottom Systems"

The following screen is displayed:

Ocean Bottom Systems

In normal use, only "Deploy" (described in section 2.3 on page 10) and "Recover" (described here) will be required. Both of these run sequences of individual commands and it is possible to run any of these individual commands from this screen.

The recovery sequence is:

- Lock OBS Components- lock each sensor in turn; and
- Return to Datum return the bowl leveller to the "home" position

The entire sequence can be run in the correct order by clicking the "Run" button in the "Recover" box. This produces diagnostic output to signify the progress of the operation. Typical output is reproduced here, with explanatory notes.

Digitiser Control

GSLA-1717

Recover

```
GSLA 171700 CMG1T2MCommand Mode
1 blocks in buffer | 255 blocks free
Guralp Systems Ltd - DM+FW v.106 mgs 17/08/09 (Build 33)
 ok_1717
RECOVER
Lock sensors for recovery? y/n
? У
Z Mass Locking..
 86 249
Success
Vertical Mass Locked Turned
Mass Position -102%
N/S Mass Locking..
 82 249
Success
North/South Mass Locked Not Turned
Mass Position 102\%
E/W Mass Locking..
 86 249
Success
East/West Mass Locked Not Turned
Mass Position 102%
    41
   41
    41
    40
    39
    39 Limit Switch 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1
    39 1 1 0 1 1 1 1 1
    39 1 1 0 1 1 1 1 1
    40 1 1 0 1 1 1 1 1
    40 1 1 0 1 1 1 1 1
    41 1 1 0 1 1 1 1 1
    41 1 1 0 1 1 1 1 1
    41
       1 1 1 1 1 1 1 1 TiltNull set 42
    1
Tilt |Rotate|
                  Х |
                         Y
                            -258 ok_1717
     -1
             1
                   -3
```

Command 'Recover' run successfully

Generated at 2009-08-18T11:19:11Z by digitiser-control.cgi 2.0.2 . Portions of output copyright (c)2009, Guralp Systems Ltd.

3 Appendices

3.1 Main Connector pin-out

This is a SEACON MIN-M-25-FSS 25-pin male connector.

A suitable mating connector is provided. Additional connectors are available from Güralp Systems Ltd. or from Seacon directly at <u>http://www.seaconbrantner.com/</u>.

The pin use is illustrated below and tabulated overleaf:

Pin Function

- 1 EAM data ground
- 2 Aquadopp positive supply V+
- 3 Aquadopp supply ground
- 4 Aquadopp power cable braid (shield)
- 5 DPG positive reference voltage +Vref
- 6 Aquadopp receive data
- 7 Aquadopp transmit data
- 8 Aquadopp data cable braid (shield)
- 9 DPG negative reference voltage -Vref
- 10 DPG +
- 11 EAM DATA OUT transmit data
- 12 EAM DATA OUT receive data
- 13 main power supply cable braid (shield)
- 14 battery supply cable braid (shield)
- 15 DPG reference voltage cable braid (shield)
- 16 DPG -
- 17 Ethernet Rx-
- 18 Ethernet Tx-
- 19 main power supply -ve
- 20 battery -ve
- 21 DPG signal? cable braid (shield)
- 22 Ethernet Rx+
- 23 Ethernet Tx+
- 24 Main power supply +ve
- 25 battery +ve

Wiring details for the compatible socket, as seen from the cable end.

3.2 Test harness pin-outs

3.2.1 Overview

The test harness is shown below. Pin numbers in *italics* refer to the pins in the Seacon connector, as documented in Section 3.1 on page 20. The individual connectors are described in the following sections.

3.2.2 Aquadopp test connector

These are standard DE9M (TIA-574) sub-miniature (D-sub) plugs, conforming to DIN 41652 and MIL-DTL-24308. They are very widely available, as are suitable mating connectors.

Pin	Function	Associated Seacon pin
1	not connected	
2	RS232 transmitted data*	7
3	RS232 received data*	6
4	not connected	
5	Ground	2
6	not connected	
7	not connected	
8	Supply voltage +ve	4
9	not connected	

***Note:** The Aquadopp is considered the DTE and the Neptune OBS the DCE for this connection, so "transmitted" refers to data *from* the Aquadopp and "received" to data received by the Aquadopp.

Note: the supply lines are shielded with the cable braid connected to pin 3 of the Seacon connector.

Note: the data lines are shielded with the cable braid connected to pin 8 of the Seacon connector.

Wiring details for the compatible socket, DE9F, as seen from the cable end.

3.2.3 Differential Pressure Gauge test connector

standard DE9F These (TIA-574) are sub-miniature (D-sub) line sockets, conforming to DIN 41652 and MIL-DTL-24308. They are very widely available, as are suitable mating connectors.

Pin	Function	Associated Seacon pin
1	-DPG	16
2	- Vref	9
3	+DPG	10
4	+Vref	5
5	not connected	
6	not connected	
7	not connected	
8	not connected	
9	not connected	

Note: the '+' and '-' lines are shielded with the cable braid connected to pin 21 of the Seacon connector.

Note: the reference lines are shielded with the cable braid connected to pin 15 of the Seacon connector.

Wiring details for the compatible plug, DE9M, as seen from the cable end.

3.2.4 Battery test connectors

These are standard 4mm "banana" plugs. They are very widely available, as are suitable mating connectors.

Cable / Plug	Function	Associated Seacon pin
Yellow / Red	+ve	25
Green / Green	-ve	20

Note: if the battery cable is shielded, the cable braid should be connected to pin 14 of the Seacon connector.

3.2.5 Power Supply test connectors

These are standard 4mm "banana" plugs. They are very widely available, as are suitable mating connectors.

Cable / Plug	Function	Associated Seacon pin
Red / Red	+ve	24
Green / Green	-ve	19

Note: if the power supply cable is shielded, the cable braid should be connected to pin 13 of the Seacon connector.

3.2.6 RS232 Data Out test connector

This is standard DE9F (TIA-574) а sub-miniature (D-sub) line sockets, conforming to DIN 41652 and MIL-DTL-24308. They are very widely available, as are suitable mating connectors.

Pin	Function	Associated Seacon pin
1	not connected	
2	Transmitted data*	11
3	Received data*	13
4	not connected	
5	Ground	1
6	not connected	
7	not connected	
8	not connected	
9	not connected	

Wiring details for the compatible plug, DE9M, as seen from the cable end.

Note: The embedded CMG-EAM is considered to be the DTE for this connection, so "Transmitted" refers to data *from* the CMG-EAM and "Received" refers to data received by the CMG-EAM.

3.2.7 Ethernet test connector

This is a standard 8P8C modular line jack, conforming to ANSI/TIA-968-A and IEC 60603. They are very widely available, as are suitable mating connectors.

Pin	Function	Associated Seacon pin
1	Rx +	22
2	Rx -	17
3	Tx +	23
4	not connected	
5	not connected	
6	Tx -	18
7	not connected	
8	not connected	

Note: the connector is wired in "MDI" mode, which is suitable for connection to a hub, switch or router. In order to make a direct connection to, for example, a PC's network adaptor, it may be necessary to use a cross-over adaptor.

Note: the colour-codes of the individual cable cores conform to TIA/EIA-568-B.

Wiring details for the compatible socket, as seen from the back, e.g. when soldering.

4 Revision history 2009-08-19 A New Document